Visiting Scientist Opportunities in the BIPM Chemistry Department (Q4 2020 and 2021)

Developing and validating methods for the comparison of chemical and biochemical standards world-wide.

The International Bureau of Weights and Measures (BIPM) is an international organization established by the Metre Convention, through which Member States act together on matters related to measurement science and measurement standards.

The BIPM has a number of vacancies for short-term secondments in the Chemical Metrology Department, supporting the development of methods which will be used to compare national measurement standards and measurement capabilities for: greenhouse gases; major air quality gases; organic small molecule and peptide and protein primary reference materials and calibrators.

About the Chemistry Department

The BIPM chemistry laboratory activity focuses on gas standards for air quality and global atmospheric monitoring, and primary calibrators for clinical chemistry and laboratory medicine, food analysis, environmental analysis, forensics and pharma. The BIPM coordinates key comparisons and pilot studies prioritized by the CCQM, in response to NMI needs, for:
– greenhouse and air quality gas standards including their isotope ratios, for which the uncertainty of standards is critical, to ensure the accurate long-term, global monitoring of these species, including the BIPM key comparison BIPM.QM-K1 for surface ozone and BIPM.QM-K2 for atmospheric carbon dioxide;
– the purity assessment of organic calibrators for small molecules and peptides/proteins (source of traceability for measurements of the amount of organic species in a wide range of clinical, environmental, food, forensic and drugs in sport applications) and reference data for their value assignment.

Working on secondment at the BIPM

The BIPM offers a unique environment for a secondment. It is located in Sèvres, on the outskirts of Paris (France) and has an international staff of about 75. There is a wide range of accommodation available nearby, including furnished apartments. There is an excellent public transport network to central Paris and the international airports are in easy reach.

Terms and conditions

Applications are welcome from employees of a national measurement institute, a designated institute or a relevant international organization. You would not be employed by the BIPM and would remain an employee of your institute. The BIPM will normally pay an allowance to cover your additional living expenses. Help will be given in finding local accommodation for the duration of the secondment.

Experience needed

The experience needed depends on the project. A good level of English (spoken and written) is essential.
Visiting Scientist Opportunities in the BIPM Chemistry Department
(Q4 2020 and 2021)

<table>
<thead>
<tr>
<th>Index</th>
<th>Programme area</th>
<th>Name and Description of Secondment Project</th>
<th>Duration</th>
<th>Required experience of Visiting Scientist to undertake Secondment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Gas Standards and Comparisons</td>
<td>CO₂ isotopes by IRIS: linearity and accuracy validation To contribute to validation studies of the linearity and accuracy of the BIPM IRIS analyser with its carousel sampling system for CO₂ isotope ratio with δ¹³C over the range -1‰ to -45 ‰ (vs VPDB-CO₂). The visiting scientist will optimise measurements performed by IRIS with a Delta Ray analyser on (pure) CO₂ samples prepared at the BIPM with the Stable Isotopes Reference Mixture generation system and compare them with values obtained by IRMS.</td>
<td>6-12 months preferred</td>
<td>• Experience in gas analysis and in particular with infrared spectroscopy of gases • Previous experience of isotope ratio measurements • Experience with Qtegra software would an advantage.</td>
</tr>
<tr>
<td>C-2</td>
<td>Gas Standards and Comparisons</td>
<td>IRMS δ¹³C and δ¹⁸O measurements of CO₂ in air standards The visiting scientist will optimise and validate a sample preparation and IRMS measurement procedure on CO₂ in air samples. The preparation facility, developed at the BIPM, will extract CO₂ from air by cryogenic trapping in order to allow measurements of CO₂ in air isotopes by IRMS with a MAT−253+ mass spectrometer. The facility will be validated on CO₂ in air reference materials with δ¹³C over the range -1 ‰ to -45 ‰ (vs VPDB-CO₂).</td>
<td>6-12 months preferred</td>
<td>• Experience in IRMS operation and data analysis • Experience in gas handling and analysis • Experience with Isodat Script Language would be an advantage • Experience with cryogenic trapping would be an advantage.</td>
</tr>
<tr>
<td>C-3</td>
<td>Gas Standards and Comparisons</td>
<td>Carbonate reaction facility for IRMS: optimisation and validation To contribute to the development of a BIPM reference method for CO₂ isotope ratio measurements based on carbonate standards and phosphoric acid reaction. The visiting scientist will optimise and validate IRMS reference procedure based on a carbonate reaction facility developed at the BIPM to prepare gaseous CO₂ from carbonate reference materials, and measurement of carbon and oxygen isotopes with a MAT−253+ mass spectrometer.</td>
<td>6-12 months preferred</td>
<td>• Experience in IRMS operation and data analysis • Experience in the analysis of carbonates with IRMS • Experience with Isodat Script Language would be an advantage.</td>
</tr>
<tr>
<td>C-4</td>
<td>Organic Analysis – Small Molecules</td>
<td>qNMR: Internal standards for ¹⁹F and ³¹P qNMR Contribute to the validation of qNMR methods for purity assignment applying to ¹⁹F and ³¹P NMR. Researchers will use the sample preparation facilities and the JEOL ECS−400 MHz spectrometer at the BIPM to develop and validate qNMR experimental parameters, to characterize a set of primary standards for use in ¹⁹F and ³¹P qNMR.</td>
<td>Minimum 3 months, preferably 6 months</td>
<td>• Expertise in the theory and practice of NMR • Background in analytical organic chemistry • Experience in performing qNMR measurements. Practical knowledge of the operation of NMR spectrometers and the optimisation of their operating parameters is essential. Previous experience with JEOL NMR systems and the Mnova NMR software an advantage.</td>
</tr>
<tr>
<td>C-5</td>
<td>Organic Analysis – Small Molecules</td>
<td>qNMR: Purity assignment of drug and pesticide pure reference standards by ¹H and ¹⁹F qNMR To support the BIPM CBKT and key comparison programme, researchers will use the sample preparation facilities and the JEOL ECS−400 MHz spectrometer at the BIPM to value assign the mass fraction content of primary standards of drug and pesticide materials.</td>
<td>Minimum 3 months, preferably 6 months</td>
<td>• Expertise in the theory and practice of NMR • Background in analytical organic chemistry • Experience in performing qNMR measurements. Practical knowledge of the operation of NMR spectrometers and the optimisation of their operating parameters is essential. Previous experience with JEOL NMR systems and the Mnova NMR software an advantage.</td>
</tr>
<tr>
<td>Index</td>
<td>Programme area</td>
<td>Name and Description of Secondment Project</td>
<td>Duration</td>
<td>Required experience of Visiting Scientist to undertake Secondment</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---</td>
<td>----------</td>
<td>---</td>
</tr>
</tbody>
</table>
| C-6 | Organic Analysis – Small Molecules | qNMR: Benzoic acid as a qNMR internal standard | Minimum 3 months, preferably 6 months | • Expertise in the theory and practice of NMR
• Background in analytical organic chemistry
• Experience in performing qNMR measurements. Practical knowledge of the operation of NMR spectrometers and the optimisation of their operating parameters is essential. Previous experience with JEOL NMR systems and the Manova NMR software an advantage. |
| C-7 | Organic Analysis – Small Molecules | qNMR: Peptide quantification methods | Minimum 3 months, preferably 6 months | • Expertise in the theory and practice of NMR
• Background in analytical organic chemistry
• Extensive experience in qNMR applications and the optimization of parameters for 2D pulse. sequence NMR measurements Previous experience with JEOL NMR systems and the Manova NMR software an advantage. |
| C-8 | Organic Analysis – Small Molecules | LC-MS/MS Impurity quantification in Pesticide and Drug Materials | 6 months, preferably 12 months | Previous experience in one or more of the following:
• LC-MS/MS of small organic molecules
• UV spectrophotometry of small organic molecules in solution
• Performing homogeneity and stability testing. |
| C-9 | Organic Analysis – Large Molecules | High resolution mass spectrometry of peptides/proteins: Parathyroid Hormone (PTH 1-84) | 6 months, preferably 12 months | • Experience with liquid chromatography – mass spectrometry. Previous experience in one or more of the following:
• LC-MS/MS of peptides/proteins
• Peptide mapping. Experience in use of high resolution mass spectrometry (Orbitrap) would be an advantage. |
| C-10 | Organic Analysis – Large Molecules | Peptide impurity corrected amino acid analysis | Minimum 3 months, preferably 6 months | • Experience with liquid chromatography – mass spectrometry. Previous experience in one or more of the following:
• LC-IDMS/MS of peptides/proteins
• Hydrolysis of peptides/proteins. |
• How to apply

Please contact the Department Director, Dr Robert Wielgosz (rwielgos@bipm.org) to discuss the project and confirm whether the secondment opportunity is still available. If you decide you would like to go ahead, please forward a copy of your CV so that the BIPM can confirm that the project would be suitable. The BIPM will then send a copy of a Secondment Contract which should be signed by the authorized person at your organization.

If the secondment opportunity is no longer available or the project is not suitable, the BIPM would be pleased to discuss opportunities for a secondment in the future.