Determination of KCRV, $u(KCRV)$ & DoE

Final Proposal by KCWG to CCRI(II)

Stefaan Pommé
John Keightley

CCRI(II) Meeting, BIPM, 14-16 May 2013
Estimators for mean

arithmetic
weighted
Mandel-Paule
Power Moderated Mean
Arithmetic mean

\[x_{\text{ref}} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

\[u^2(x_{\text{ref}}) = \sum_{i=1}^{N} (x_i - x_{\text{ref}})^2 / (N - 1). \]
Good: ignore wrong unc
Bad: inefficient

biased mean
large uncertainty
= not “efficient”
Bad: low sample variance
Calculate uncertainty from maximum of
- propagated sum of stated uncertainties
- sample variance

\[u(\bar{x}) = \max \left(\frac{1}{N} \sqrt{\sum_{i=1}^{N} u_i^2}, \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N(N-1)}} \right) \]
Best solution is close to \textit{arithmetic mean} if

- measurement uncertainty contains no useful information
- magnitude error on uncertainty is >2x larger than magnitude due to metrological reasons

= the “best” with “bad uncertainty data”
= inefficient with “consistent data”
Weighted mean

\[x_{\text{ref}} = u^2(x_{\text{ref}}) \sum_{i=1}^{N} \frac{x_i}{u_i^2} \]

\[\frac{1}{u^2(x_{\text{ref}})} = \sum_{i=1}^{N} \frac{1}{u_i^2} \]

statistical weight = reciprocal variance associated with \(x_i \)
Good: efficient
Bad: sensitive to error

discrepant data set

biased mean
low uncertainty
Best solution is close to \textit{weighted mean} if

- measurement uncertainties are correct
- ‘value’ and ‘uncertainty’ outliers are excluded

= the “best” with “perfect data”
= sensitive to “low uncertainty” outliers
Mandel-Paule mean

\[
x_{\text{ref}} = u^2(x_{\text{ref}}) \sum_{i=1}^{N} \frac{x_i}{u_i^2 + s^2},
\]

\[
\frac{1}{u^2(x_{\text{ref}})} = \sum_{i=1}^{N} \frac{1}{u_i^2 + s^2},
\]

\[
\tilde{\chi}_{\text{obs}} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \frac{(x_i - x_{\text{ref}})^2}{u_i^2}}.
\]

\(s^2\) is artificially added “interlaboratory” variance to make reduced \(\chi = 1\)
Mandel-Paule mean

= weighted mean for a consistent data set
Mandel-Paule mean

≈ arithmetic mean for an extremely discrepant data set
Mandel-Paule mean

= intermediate between arithmetic and weighted mean for a slightly discrepant data set
Best solution is close to Mandel-Paule mean if

- measurement uncertainties are informative
- ‘value’ and ‘uncertainty’ outliers are symmetric

= one of the “best” with “imperfect data”
if no tendency to underestimate uncertainty
$x_{\text{ref}} = \sum_{i=1}^{N} w_i x_i$

$w_i = u^2(x_{\text{ref}}) \left[\left(\sqrt{u_i^2 + s^2} \right)^\alpha S^{2-\alpha} \right]^{-1}$

$S = \sqrt{N \cdot \max(u^2(\bar{x}), u^2(x_{\text{mp}}))}$

S is a typical uncertainty per datum (max arithmetic or M-P unc)

$0<\alpha<2$ = power reflects level of trust in uncertainties
PMM: $\alpha = 2$

= Mandel-Paule mean

‘understated’ uncertainty?
PMM: $\alpha = 1$

= closer to arithmetic mean

less weight to this point
Choice of power α

<table>
<thead>
<tr>
<th>power</th>
<th>reliability of uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td>uninformative uncertainties</td>
</tr>
<tr>
<td></td>
<td>(arithmetic mean)</td>
</tr>
<tr>
<td>$\alpha = 0$</td>
<td>uncertainty variation due to error at least twice the variation due to metrological reasons</td>
</tr>
<tr>
<td></td>
<td>(arithmetic mean)</td>
</tr>
<tr>
<td>$\alpha = 2 - 3/N$</td>
<td>informative uncertainties with a tendency of being rather underestimated than overestimated</td>
</tr>
<tr>
<td></td>
<td>(intermediately weighted mean)</td>
</tr>
<tr>
<td>$\alpha = 2$</td>
<td>informative uncertainties with a modest error; no specific trend of underestimation</td>
</tr>
<tr>
<td></td>
<td>(Mandel-Paule mean)</td>
</tr>
<tr>
<td>$\alpha = 2$</td>
<td>accurately known uncertainties, consistent data</td>
</tr>
<tr>
<td></td>
<td>(weighted mean)</td>
</tr>
</tbody>
</table>
Test of Estimators by Computer Simulation

arithmetic
weighted
Mandel-Paule
Power Moderated Mean
Efficiency for discrepant data

arithmetic < PMM, M-P < weighted
Reliability of uncertainty

weighted \(<< M-P < PMM < \text{arithmetic} \)

![Graph showing the relationship between reliability and uncertainty/standard deviation for different methods: AM, M-P, PMM, WM. The graph indicates that PMM is more reliable than M-P, which is more reliable than AM, and all are less reliable than arithmetic.](image)
Best solution is close to **PMM** if

- measurement uncertainties are informative
- uncertainties tend to be understated
- data seem consistent but are not

= one of the “very best” with “imperfect data”
= more realistic uncertainty than Mandel-Paule mean
= more adjustable to quality of data than M-P mean
Outlier identification

generally applicable method
Outlier identification

CCRI(II) is the final arbiter regarding correcting or excluding any data from the calculation of the KCRV.

Statistical tools may be used to indicate data that are extreme.

= a way to protect the KCRV against erroneous data, data with understated uncertainty, extreme data asymmetrically disposed to the KRCV

= a way to lower the uncertainty on the KCRV
Outlier identification

\[|e_i| > ku(e_i), \quad e_i = x_i - x_{ref} \]

\[u^2(e_i) = u^2(x_{ref})\left(\frac{1}{w_i} - 1\right) \quad \text{if } x_i \text{ included in mean} \]

\[u^2(e_i) = u^2(x_{ref})\left(\frac{1}{w_i} + 1\right) \quad \text{if } x_i \text{ excluded from mean} \]

- valid for any type of mean, using normalised \(w_i \)
- default \(k = 2.5 \)
Both options are possible within the method.

→ outlier rejection should be based on technical grounds
Degree of equivalence

generally applicable method
Degree of equivalence

\[d_i = x_i - x_{\text{ref}}, \quad U(d_i) = 2u(d_i) \]

\[u^2(d_i) = (1 - 2w_i)u_i^2 + u^2(x_{\text{ref}}) \quad \text{x_i included in mean} \]

\[u^2(d_i) = u_i^2 + u^2(x_{\text{ref}}) \quad \text{x_i excluded from mean} \]

- valid for any type of mean
Conclusions

The **Power Moderated Mean** keeps a fine balance between **efficiency** and **robustness**, while providing also a **reliable uncertainty**. **Outlier identification** and **degrees of equivalence** are readily obtained.